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The Weyl-Wigner correspondence prescription, which makes great use of Fourier 
duality, is reexamined from the point of view of Kac algebras, the most general 
background for noncommutative Fourier analysis allowing for that property. It 
is shown how the standard Kac structure has to be extended in order to 
accommodate the physical requirements. Both an Abelian and a symmetric 
projective Kac algebra are shown to provide, in close parallel to the standard 
case, a new dual framework and a well-defined notion of projective Fourier 
duality for the group of translations on the plane. The Weyi formula arises 
naturally as an irreducible component of the duality mapping between these 
projective algebras. 

1. I N T R O D U C T I O N  

In its broadest meaning, the word "quantization" signifies the passage 
from the classical to the quantum description of a system. Since the most 
complete classical description is to be found in the Hamiltonian formalism, 
the natural path to take is quantization on phase space. This is the main 
appeal of the Weyl-Wigner approach, which realizes the correspondence 
principle by attributing a quantum operator to each classical dynamical vari- 
able via a Fourier transformation of its density. Conversely, it also attributes 
a c-number function to each operator by another Fourier transformation, 
this time involving an integration on operator space. All this supposes the 
possibility of performing two-way Fourier transformations, that is, of doing 
a transformation and its inverse. Two points should be noted: (i) the integration 
over operator space, as usually presented, is purely formal and should be 
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better defined; (ii) the two-way Fourier transformations make use of a deep 
property of harmonic analysis, Fourier duality. This property only holds 
under very severe conditions. Actually, at least as usually presented, the 
Weyl-Wigner formalism supposes a very particular kind of that duality, the 
Pontryagin duality, which should not be expected to be at work when the 
phase space is not, for each degree of freedom, the plane R 2 which models 
vector phase spaces. Pontryagin duality is valid only when the group of linear 
symplectomorphisms (transformations preserving the phase-space symplectic 
structure) is Abelian. This group is, for R 2, the translation group R 2. To 
quantize on more general phase spaces, we need to consider the general 
approach to Fourier transformations, which requires Kac algebras. We have 
shown elsewhere (Aldrovandi and Saeger, 1996) how this general formalism, 
in all its complexity, is necessary even for the simplest nontrivial phase space, 
the half-plane. We intend here to revisit the apparently well-known R 2 case 
from this point of view. Because of its vector space structure, the plane would 
seem not to need a more involved treatment. We shall see that this is not so. 
It actually conceals a great deal of structure under the appearance of simplicity 
and, due to its nontrivial cohomology, requires an extension of the very 
concept of Kac algebra. Furthermore, through the pioneering work of Segal 
(1953) and the subsequent introduction of weights in the 1960s, the general 
approach provides a precise meaning to the otherwise mysterious integration 
over operator space. 

Kac algebras are the most general structures presently known on which 
Fourier analysis can be realized in its integrity. Their rather involved axioms 
are essential to the most demanding of the properties attached to harmonic 
analysis, precisely the duality mentioned above. As soon as we depart from 
the case of functions on Abelian groups, for which the Pontryagin group-to- 
group duality holds in all its simplicity, Fourier transforms and their inverses 
can be defined only for functions on domain spaces much more sophisticated 
than groups. Starting from functions on groups which are separable and 
locally compact, we arrive necessarily at Kac algebras, which are Hopf-von 
Neumann algebras endowed with Haar weights. This means that they are 
noncommutative spaces on which we know how to perform (noncommutative) 
integration. Roughly speaking, whenever we do Fourier analysis, we are 
supposing the presence (explicit or not) of Kac algebras. We propose here 
to bring to light the algebras behind the apparently simple case of the plane 
R 2. An important point is that, as they are known today, Kac algebras are 
related to linear representations and as such they are not sophisticated enough 
to cope with the problem. In order to apply to quantum mechanics, the Kac 
structure may require an extension to projective representations, and this is 
precisely what happens in the usual Weyl-Wigner formalism. The situation 
is rather curious. On one hand, so much is "degenerated" in this simplest of 
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all cases (the space dual to R 2 is R 2 itself, which coincides also with the 
group manifold of linear symplectomorphisms) that we get the impression 
that the intricacies of the general formalism can be overlooked; on the other 
hand, because of its nontrivial cohomology, it requires an extension to projec- 
tive representations, which is not necessary in other, more complicated, situa- 
tions. For example, no extension is required when the phase space is the 
half-plane (Aldrovandi and Saeger, 1996). The central extension of R 2 is, 
roughly speaking, the Heisenberg group Ha. No extension is a particular case: 
it can be seen as a trivial extension. We can say that extensions, trivial or 
not, are required in the generic case and their effects on the standard structures 
have to be studied. 

The essential notation is introduced in Sections 2 and 3, which sum up 
the usual lore on quantization on phase space and the Heisenberg group. 
Projective representations of a group can be obtained from the linear represen- 
tations of its extension. We thus arrive at the projective representations of 
R 2 from the linear representations of H 3. For Kac algebras, a parallel procedure 
will be used: we start from the well-established Kac algebra duality for H3 
and then proceed to find the projective Kac algebras of R 2. Actually, a pair 
of Kac algebras is necessary for the materialization of duality. One, called 
the Abelian Kac algebra, has the L~%functions for elements. The other, the 
symmetric Kac algebra, includes the left-regular representations. The problem 
lies in the fact that the symmetric Kac algebra for the Heisenberg group/-/3 
is generated by (linear!) left-regular representations, while the Weyl kernels 
are irreducible projective operators. This is reviewed in Section 4. To go 
from the H3-Kac duality to the desired projective algebras, two steps are 
involved: projection and decomposition into irreducibles, in this order or its 
inverse. The extensions so obtained are far from trivial. Kac algebras are, to 
begin with, Hopf-von Neumann algebras, and the necessary extensions 
involve generalizations of some of the current concepts on Hopf algebras. 
Though most of the axioms remain unchanged, some of the usual requirements 
valid for linear representations must be extended to their projective counter- 
parts. This generalization to projective Kac algebras is presented in Section 
5. It leads to the general notion of projective Kac algebra. An extended 
duality comes out, a projective Kac duality leading to a projective Fourier 
duality. It is necessary to introduce such notions as projective coinvolution 
and coprojective coinvolution as well as to extend the usual axioms concerning 
anti-(co)automorphisms. In Section 6 the Weyl-Wigner correspondence is 
recast into the Fourier duality language. Weyl's formula shows up as an 
irreducible component of the duality mapping between the previously 
obtained projective algebras. A tentative prescription for quantization on 
general phase spaces is sketched in the final considerations. 
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2. CLASSICAL AND QUANTUM MECHANICS IN PHASE SPACE 

The classical picture of mechanics, as is well known, can be described 
geometrically in terms of the symplectic structure of the phase space (Arnold, 
1978). The simplest symplectic manifold is just R 2, the most usual arena of 
classical dynamical systems with one degree of freedom. Acting by symplec- 
tomorphisms on this phase space, with its trivial symplectic structure to 
= dp ^ dq, is the Abelian group--also denoted R2--of  two-dimensional 
translations. To classical Hamiltonian dynamical systems on R 2 associated 
to Hamiltonian functions H there correspond symplectic Hamiltonian vector 
fields Xn satisfying the Hamilton equations 

ixnto = - d H  (1) 

The nondegeneracy of the symplectic form implies a local isomorphism 
between vector fields and 1-forms [see (1)] and a homomorphism between 
vector fields and C=-functions. Vector fields constitute a Lie algebra by 
the Lie bracket, whose isomorphic image on the space of functions is the 
Poisson bracket 

{f, g} = - ~ ( x : ,  x . )  

According to Dirac (1958), in order to quantize on such a space, we must 
be sure that there exists a faithful correspondence between this Poisson 
algebra and an operatorial algebra. The closest operator algebra we have at 
hand is the Lie algebra of the group acting on the phase space by symplecto- 
morphisms. In the Euclidean case, since the translation group is Abelian, we 
must central-extend it to the Heisenberg group in order to have the isomor- 
phism of the group and the Poisson Lie algebras. Such an isomorphism 
allows the construction of a faithful quantization map on this phase space 
(Isham, 1984). 

From the point of view of harmonic analysis, the Pontryagin duality for 
the Abelian group R 2 ensures that the Fourier transform and its inverse 
constitute an isomorphism between the Abelian convolution algebra L1(R 2) 
and also the Abelian algebra L=(R 2) of essentially bounded functions with 
pointwise product, both contained in C=(R2). The Fourier transform of an 
Ll-function f is the L=-function 

1 ( dq dpf(p ,  q)e -i(yq+xp) 
[~;f](x, y) = f(x, y) = ~ JR2 (2) 

where the kernel e i(yq+xp) =-- X(x,y)(q,  P) is a character (one-dimensional irreduc- 
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ible representation) of the group R 2. Characters satisfy the orthogonality- 
completeness relation 

fR dX dy p' )  = (2"tr)2~(q - q')8(p - p') X~x,y)(q, P)X(x,y)(q', 
2 

which can be used to invert (2) and write the inverse Fourier transform as 

1 fR dx dy f(x, y)e i(yq+xp) (3) f(P' q) = ~ 2 

From this point of view, the correct way to regard these formulas is to see 
the first as the Fourier transform from LI(R 2) into L~(1~2), which is the same 
as L~(R2), since this group is self-dual, 1~ 2 = R 2, and the second as the 
transform from L1(~ 2) into L~(R2). This is so because the Fourier transform 
is defined as a mapping between the L~-space of an Abelian group into the 
L| of its dual, the space of characters, which is also a group. Because 
R 2 is self-dual, the Fourier transform turns out to be an algebra isomorphism, 
mapping convolution to pointwise product (Reiter, 1968). This enables us to 
regard formula (3) as the inversion of  (2), or as the Fourier transform for 
k 2. Thus, from the point of view of harmonic analysis, this group is highly 
"degenerate." Extending the domain of the transform ~ from L ~ to the space 
~ ' ( R  2) of  tempered distributions on R E, ~:  5e'(R2) -~ ~e'(R2), turns out to 
be a topological isomorphism (Sugiura, 1990; Choquet-Bruhat et al., 1982). 
The same happens when ~ is restricted to the space 5e(R 2) of rapidly decreas- 
ing functions, confirming the degeneracy alluded to. 

To go from this classical approach to a quantum picture, Weyl (1931) 
proposed to modify the Fourier transform formula by changing its scalar 
kernel into an operatorial kernel. He wrote 

J~h = fR 2 dq dpf(q, p)e -<~)tp#+qp) (4) 

instead of f, where ~,/~ are the usual coordinate and momentum operators 
of Euclidean quantum mechanics. These operators satisfy the Heisenberg 
commutation relation [~, ~] = ih. By the Glauber identity, the operatorial 
kernel 

can also be written as 

S~(x, y) =- e -<~)<y#+xp) 

S~(x, y) = e(i/2~YU(y)V(x) 

in terms of the Weyl operators 

U ( y )  = e - ~ ) y o  and V(x) = e -<~)xp 
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These satisfy the Weyl commutation relation (we use the representation theory 
convention, by which the leftmost operator acts first) 

while for SA 

U(y) V(x) = e-t~)xyV(x)U(y) 

S~(x, y)Sn(x', y') = e(i/2~)(xy'-Yx')S~(x + x', y + y') (5) 

These are consequently not linear, but projective operators. They realize an 
operatorial representation of R 2, otherwise impossible for such an Abelian 
group. Summing up, as a realization of the classical-quantum correspondence 
principle, Weyl proposed with (4) to consider the passage from the usual 
scalar Fourier transform to an operatorial one written in terms of projective 
representations. The inverse way (Wigner, 1932), leading from the quantum 
to the classical picture, involves an integration on operator space (taking of 
the trace): 

f(q, p) = Tr[S~(q, P)f~l (6) 

Since the projective operator product (5) carries a natural twisting, and since 
formulas (4), (6) ought to represent an algebra isomorphism, the correspond- 
ing convolution in LI(R 2) also gets twisted: 

/h" ~ = ~ dx dy dx' dy' f(x, y)g(x', y') 
JR 2• 

• e~e2~)(xy'-Yx')S~(x + x', y + y')  

= ~ dE' dy" ( f  | g)(x", y")S~(x", y") 
JR 2 

where 

( f  (~ g)(x", y") = fg2 dx dy e~U2A)~ y)g(x" - x, y" - y) 

Formulas (4) and (6) provide a two-way correspondence between the classical 
(Ll-functions) and the quantum pictures. The further correspondence to L | 
functions is provided by the Fourier transform. The Fourier transform of a 
twisted convolution of two functions gives rise to the twisted (noncommuta- 
tive) product of their Fourier transforms, which characterizes a deformation 
of the Abelian algebra of the pointwise product. This two-way classical- 
quantum procedure is the Weyl-Wigner correspondence prescription. 

Projective representations of a group are generally obtained from the 
linear representations of its central extension (Bargmann, 1954), in our case 
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the Heisenberg group. Harmonic analysis on general locally compact groups 
like the Heisenberg group is not as trivial as that on the Abelian ones. Because 
such groups have infinite-dimensional irreducible representations, finite alge- 
bras do not have enough structure to host a duality. We must deal with 
semifinite von Neumann algebras endowed with additional structure, the Kac 
algebras. From the relation between the irreducible representations of  the 
Heisenberg group and the projective operators appearing in the Weyl-Wigner  
formalism, we can relate harmonic analysis on the Heisenberg group to a 
projective harmonic analysis on R 2 and "explain" the origin of  the Weyl -  
Wigner formulas. This will be done in the final sections, after we have 
established some facts on the Heisenberg group in Section 3 and reviewed 
the duality theory for it in terms of Kac algebras in Section 4. 

3. TI lE  HEISENBERG G R O U P  

In this work the three-dimensional Heisenberg group/-/3 is regarded as 
the central extension of  the two-dimensional Abelian group of translations 
on the plane by the torus T. We shall use the notation (x, or) = (Xl, Xz, ei~ 
x~, x2 ~ R, 0 ~ R/2"tr, to denote the elements and coordinates of/-/3. As is 
well known, the second cohomology space H2(R 2, R/2~r) of cocycles from 
R 2 to R (mod 2"rr) is not trivial (Tuynman and Wiegerinck, 1987). Since 2- 
cocycleS classify central extensions, inequivalent 2-cocycles give rise to 
inequivalent central extensions. Thus, for a chosen cocycle f l  ~ H2(R 2, R/ 
2"rr), e.g., 

l ) (x ,  y) = �89 - ylx2) 

the product on/-/3 = R 2 • T is given by 

(7) 

(x, cO(y, [3) = (x + y, off3e iatx'r)) 

where associativity is ensured by the closeness of f l  in H 2, namely 

81)(x, y, z) = fl(y, z) - ~ (x  + y, z) + ll(x, y + z) - l)(x, y) = 0 

The identity in/-/3 is (0, 1) and the inverse element of (x, ct) is ( - x ,  or-l). 
The following useful properties of  f l  are obvious from (7): fl(x, 0) = 0, 
fl(x, y) = - ~ ( y ,  x), l ) ( - x ,  y) = -O(x ,  y). 

The irreducible linear representations of/ /3 can be obtained by Mackey's  
induced representation method (Mackey, 1987; Taylor, 1986). Their division 
into inequivalent classes is given by the Stone-von Neumann theorem, which 
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also provides the unitary dual space of this group. These representations are 
divided into infinite-dimensional and one-dimensional ones in the dual Ha 
= (Z - {0}) O R 2, according to 

T~(x, ct) = eiVOe(i/2)vxlx2e-il'x2tle -ixtp, v ~ Z - {0} (8a) 

Tab(X , Or) = eiax2e ibxl, (a, b) ~ R 2 (8b) 

where the self-adjoint operators ~, p act on L2(R) by 

~talJ(q) = qd:(q) 

l~O( q) = - iO qO( q) 

We recall that the commutation relation 

[#,/~] = i 

is a realization of the Lie algebra of H3 on that Hilbert space, which is also 
isomorphic to the Poisson algebra generated by the coordinates q, p plus the 
constant function 1 on the Euclidean symplectic manifold R 2. 

4. FOURIER DUALITY FOR THE HEISENBERG GROUP 

Our objective is to describe the Weyl-Wigner correspondence in terms 
of projective Fourier duality, that is, to find a connection between Kac 
duality and the algebra generated by irreducible projective operators. Since the 
projective representations of R 2 are obtained from the linear representations of 
Ha, we should start from the well-established Kac algebra duality for this 
group. This is reviewed in this section. As already said, duality requires a 
pair of Kac algebras: the Abelian Kac algebra, formed with the L~-functions, 
and the symmetric Kac algebra, including the left-regular representations. 

4.1. The Symmetric Kac Algebra of / /3  

Let us begin by introducing the symmetric Kac algebra of//3, KS(H3), 
which is built on the yon Neumann algebra ./I~(H3) generated by the left- 
regular representation operators of the group. For details on Kac algebras, 
see Enock and Schwartz (1992) and the quick review in the first sections of 
Vainermann (1988), or Aldrovandi and Saeger (1996). First recall that the 
left-regular representation L acts on the Hilbert space L2(H3) of square- 
integrable functions on the Heisenberg group by 

[L(x, ot)f](y, [3) = f ( ( x ,  ot)-l(y, [3)) (9) 

The scalar product in this space is given by 

( f l  g)L2(H3) = t dx dcx f ( x ,  cOg(x, cx) 
J"3 
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and the norm by ]Ill] 2 = (flf)L2(n3), where dx da  is the left- and right-invariant 
measure on/-/3, which is unimodular. In this section the spaces LP(H3), p = 
1, 2, oo, will be denoted simply by L e. 

.d/t(H3) is a subalgebra of  ~(L2), the Banach algebra of all bounded 
operators on the Hilbert space L 2. This means that the product on ./R(H3) is 
associative, there exists a unit I = L(0, 1) (the identity operator), and also 
an involution (taking of the dagger) such that I* = L The norm is defined 
b y  IITII -- sup{ IITO:II2, 11'112 = 1}, under which IIT*II = IITII [~t(n3)  is an 
involutive Banach algebra] and II T*T]I = II TII2 (it is a C*-algebra). There is 
also a family of  seminorms defined by II TII., = I(~JIT~b)L21, t~, ~b ~ L 2, 
whose open balls define the weak topology. ~t(H3) is closed in this topology. 

The elements of KS(H3) are written in terms of the generators as 

.f = f dx day(x, a)L(x, a) (10) 
J., 

where the coefficients f are functions of compact support, whose algebra 
C(H3) is dense in the convolution Banach algebra L ~. The product can be 
written in terms of the convolution of the coefficients: 

f" g = IH3xH3 dx dot dy dr3 f(x, a)g(y, ~)L((x, c~)(y, f3)) 

= f dz dv ( f*  g)(z, ~I)L(z, ~1) 
J"3 

where the convolution on C(H3) is written 

( f  * g)(z, ~1) = In3 dx dory(x, ot)g((x, a)-t(z,  "y)) 

Formula (10) can also be regarded as expressing the left-regular representation 
of  L l induced by the left-regular representation of  the group, and as such is 
denoted L(f). 

With such elements, KS(H3) has a structure given by the following 
operations: 

�9 A product given by the group multiplication, 

L(x, a)L(y, f3) = L(x + y, a~e in(x'y)) (11) 

�9 A symmetric (wherefrom the name of this algebra) coproduct, 

~L(x, a) = L(x, a) | L(x, a) (12) 
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�9 A coinvolution, 

f<(L(x, o0) = Lt(x, oO = L((x, or) - l )  (13) 

�9 A normal, faithful, and semifinite (n.f.s) Haar trace, 

if(T) = ~llfll~ if T = ~ .j~ T e At(Ha) + (14) 
I. + ~ otherwise 

Normal, faithful, and semifinite mean, respectively, that: if(T) is the upper 
bound of the sequence {if(T,.)} if T e At(H3) + is the upper bound of the 
sequence {T/}; if(T) = 0 implies T = 0, T e At(H3)+; the algebra span{T 
E At(H3)+Ii(T) < ~} is o'-weakly dense in At(H3). The o'-weak topology 
is defined by the open balls of the seminorms 

IIFIl~,,,,,, -- ~ [((bilE I l/i) I 
i 

where 

II,b, II 2 < o~, E I1',112 < ~ 
i i 

At(Ha) + is the set of positive elements of  At(H3), that is, the set of operators 
with positive spectrum. 

Equation (14) is coherent with 

i ( f )  = f(O, l) 

for in this case i ( j  ~'t .j2-) = ( f , ,  f)(O, l) = [I)112 2, where the asterisk denotes 
the involution on L l given by 

f*(x ,  a)  = f ((x ,  a) - t)  (15) 

The coproduct has a canonical implementation on At(H3) in terms of a 
unitary operator if" ~ ~ ( L  2) | L | 

~tL(x, a) = l~(I ~ L(x, ot))ff'* (16) 

This fundamental operator is unique and is fixed by 

[WF](x, a;  y, 13) = F((y, 13)-l(x, a); (y, 13)) (17) 

where F ~ C(H3 • /-/3). Its adjoint if'* is given by 

[l~Z*F](x, or; y, 13) = F((y, 13)(x, a); (y, 13)) 

The importance of if" and its dual W = o" o if'* o o" lies in that they generate 
the Kac duality, in the sense that they are the generators of  the representations 
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linking KS(H3) and its dual. As a consequence of that and of (16), they satisfy 
the pentagonal relation 

(I @ 17V)(tr | I)(I ~ lTV)(tr ~ I)(ITV ~ I) = (I711 ~ I)(I | 1711) 

In the same way, the coinvolution has a canonical implementation in terms 
of the antilinear isometry J: L 2 ---> L 2 by 

~(L(x, a)) = JLt(x, r 

The latter is given on C(H3) by [Jf](x, a) = f(x ,  r and in the case of an 
unimodular group like H3, it also implements the involution in the (pre)- 
dual algebra. 

4.2. The Abelian Kac Algebra of H3 

In order to be a Kac algebra, Ks(H3) = (A~(H3), /~, ~, ~) must satisfy 
a certain set of axioms. These will be presented later in Section 5.1.1 on the 
projection process. We only anticipate that KS(H3), as introduced above, does 
satisfy them. For the time being we are interested in duality for Ha. The dual 
of K~(H3) is obtained as the image of the Fourier representation h of the 
predual of ~(H3). The predual ~(H3). ,  which is isomorphic to the Fourier 
algebra A(H3) of//3, is the space of all ~-weakly continuous linear functionals 
on ~t(H3). The representative elements of ~(H3) are linear forms &fg on L 2, 
in terms of which the corresponding functions in A(H3) are defined by 

Cofg(x, or) =- (Lt(x, or), (ofg> = ( f  * gO(x, or) ~ A(H3), f, g E L 2 
(18) 

where (L(x, et), &fg) =-- (L(x, tx)fl g)L2 by definition of &fs, and 

g(x, cx) = g((x, oO-b 

Notice that, by applying the Canchy-Schwartz inequality to (18), we find 
that this function has an upper bound, that is, I~fg(X, 0t)] --< Ib~[2l[gl[2 < 0% 

and consequently A(H3) C L ~ The product in the predual A(H3) is obtained 
by duality from the coproduct in KS(H3), 

(Lt(x, a), ~Dfg" COhl ~ = ~tL'~(X, O[), ffOfg ~ COhl ) (19) 

and, as follows trivially from (12), is the Abelian pointwise product. The 
involution o in A(H3) also follows by duality from 

(Lt(x, or), &],> = (K(Lt(x, tx))*, &:g) (20) 

and is simply the complex conjugation implemented by J. 
To find the Fourier representation h, defined by 

[h(&)f](x, or) = [(Co o R | id)(Af)]r tx), f E L 2 (21) 
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we may use the formula 

( l~(f  ~ g) lh ~ /)L2| = (glh(&hf)l)L2, f,  g, h, l ~ L 2 (22) 

which relates h to the dual of its generator W. Computing the double scalar 
product in (22), taking into account (17), and identifying &hf from (18), we 
get h = /d. This means that the Kac algebra dual to KS(H3) is built on the 
von Neumann algebra L ~ of measurable and essentially bounded functions on 
the Heisenberg group. The coproduct, coinvolution, and trace thus obtained, 
together with the pointwise product and the involution, satisfy the Kac algebra 
axioms. This Abelian Kac algebra KS(H3) on L ~ is then defined by the 
following structure: 

[f" gl(x, a) = f (x,  a)g(x, or) (23a) 

1 = 1 such that l(x, et) = 1 V(x, et) (23b) 

A(f)((x, et) @ (y 13)) = f((x, ot)(y, 13)) (23c) 

K(f)(x, or) = f((x, or) - l)  (23d) 

qfff) = f dr detf(x, et), f ~ L ~+ (23e) 
JH 

3 

The positive elements are the positive-definite functions in L ~. This von 
Neumann algebra is also a subalgebra of ~(L2), which acts on L 2 by pointwise 
multiplication. Its norm is given by Itt]l~ --- ess.sup. If(x)l, which is the 
smallest number C (0 -< C < ~) such that If(x) I -< C locally almost every- 
where (Reiter, 1968). The predual of L ~ is just L l, the convolution algebra 
with involution given by (15). Its structure is also obtainable by duality 
relations similar to (19) and (20), but now between L ~ and L I. The fundamental 
operator for this algebra is W, which implements A and is given by 

[WF](x, or; y, 13) = F((x, ct); (x, c0(y, 13)) 

while the dual 3 of J is given by [Jf](x, or) = f ( - x ,  or-l), in terms of which 
we have K(f) = 3~f3 on L 2. 

The duality KS(H3) - Ka(H3) for the Heisenberg group will be complete 
when L~ = L l is represented in ~t(H3). This is carried out by the Fourier 
representation h, dual of h, which is just the regular representation of L ~ 
restricted to act on L ~ tq L 2. Another way to see that, and in fact to deduce 
it, is to use the dual of formula (22), 

(W(f  | g) lh | I)L2| = (g]h(s 2, f, g, h, 1 E L 2 (24) 

where tOfg ~ L l is defined by (h, tofg) = (hfl g) .'. tOfg = j~. We obtain 
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f 
h(f)  = Jn3 dx dot f (x ,  oOL(x, r f e L l 

whose image is just At(H3). Recall that formula (24) is a consequence of  the 
dual if" = or o W* o or being the generator of  h. To see that and to understand 
what the word generator really means, define qb ~ L2(H3, L 2) by [~b(y, 13)](x, 
a) = F(x, or; y, 13), where F e L 2 | L 2. These spaces are isomorphic. Recall 
also that, as a representation, the operator L is a bounded map between/-/3 
and ~(L2). Then for (y, 13) fixed, L(y, 13) ~ ~(L2), 6(y, 13) ~ L 2, and we have 

[L(y, 13)6(Y, 13)1(x, a)  = [6(Y, 13)]((Y, 13)-1( x, or)) 

= F((y, 13)-l(x, or); (y, 13)) 

which is just [ff'F](x, a; y, 13) as given in (I7). That is, L: /-/3 ---> ~(L2), 
which induces (generates) h, can be seen as the operator if" ~ ~ ( L  2) | L ~. 
This is put in compact form as h(f)  = (/d | f)(ff ') .  

As a final remark regarding such Kac algebras, notice that both Ka(H3) 
and K'(H3) are represented on L2(H3) by the Gelfand-Naimark-Segal  (GNS) 
construction. The first is represented by the inclusion of L ~ and the latter by 
the inclusion of the LLcoefficients. 

5. P R O J E C T I V E  KAC A L G E B R A S  

In this section we project the symmetric and Abelian Kac algebras of  
/-/3 into algebras related to the projective representations of  R 2 and obtain a 
projective duality extension. It is worthwhile to spend some time on the 
definition of  the projective representations, since they are crucial for the 
projection process. 

We start from Bargmann's (1954) method to obtain projective representa- 
tions of  a group from the linear representations of  its central extensions. The 
representations of  the central extension giving rise to projective representa- 
tions are those reducing to the identity when restricted to the central subgroup. 
In our case we have the left-regular representations of/-/3, which act on 
L2(H3) by (9). As before, we will concentrate on the central extension defined 
by the cocycle 1~ introduced in (7). It is clear from (9) that the restriction 
of L to T is not the identity representation, so that we must make L act on 
another space, suitable to our purposes. By Mackey's induced representation 
method (Mackey, 1987), the left-regular representation can be regarded as 
induced by the identity representation of the subgroup { e }. If in the induction 
process we change any other subgroup for {e}, the resulting representation 
is called quasiregular (Barut and Raczka, 1977). Thus, since T is central, its 
behavior is equivalent to that of {e}, which enables us to interpret the 
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representations induced by the identity representation of T as the regular 
representations acting on another space. By that method, L(x, or) should act 
on a Hilbert space isomorphic to L2(R2), which we call here H(H3). Its 
elements are square-integrable functions when restricted to R 2 and furthermore 
satisfyf((x, o0(0, 13)) = 13-1f(x, ct). Since (x, et) = (x, 1)(0, or) = (0, c0(x, 
1), we have the decomposition 

f ( x ,  a)  = a-~f(x,  1) -- et-lf(x) (25) 

where the same notation f for functions on H3 and on R 2 is used. By this 
natural projection of LZ(H3) into L2(R2), (9) can be rewritten as 

[L(x, et)f](y) = ae-ia(-x,Y)f(y -- X) 

which does reduce to the identity when restricted to T, namely [L(0, a)f](y) 
= etf(y). The respective projective representation of R 2 is then defined on 
L2(R 2) by 

[La(x)f](y) -- [L(x, 1)f](y) = eia(x'Y)f(y - x) (26) 

From what has been said above we can also write the decomposition of L(x, 
r as 

L(x, or) = otLa(x) (27) 

As a consequence, the R 2 operation (sum) is now represented by 

La(x)Lt~(y) --- eill(x'y)Lfl(x + y) (28) 

which characterizes a projective representation. 

5.1. Projective Kac Algebras of  the Translation Group 

We proceed now to project KS(H3) and Ka(H3) according to the decompo- 
sition (27). Let us begin by observing that, although f l  is not trivial in HZ(R z, 
R/2~), it is exact in another group cohomology. If  a complex of  gaugefied 
(that is, point-dependent) k-cochains R X (R2) | ---> R with a derivative 8' 
is considered, then there exists a l-cochain O such that f l  = 8 ' 0 ,  or 

fl(x, y) = 8'O(x, y) = O(y .  q; x) - O(q; x + y) + O(q; y) (29) 

where y .  q - q + Yl is an action of R 2 on R (Aldrovandi and Galetti, 1990). 
One such O is given explicitly by 

O(q; x) = -�89 + Xl)X2] (30) 

and satisfies O(q; 0) = 0, O(q; - x )  = - O ( x  -t  -q; x), O(q; x) = - O ( x -  q; -x) ,  
Vq ~ R, x ~ R 2. By direct calculation one also obtains the interesting property 

O(q; x) -~ O(y-q;  x) = O(q; - x )  - O(y -z "q; - x )  = ytx2 (31) 
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This kind of 1-cochain appears naturally in representation theory. For exam- 
ple, representations (8a) on L2(R) can be written in terms of O as follows 
(Varadarajan, 1970): 

[T~(x, et)f](q) = eiv~176 "q), v ~ Z - {0} (32) 

With these remarks in mind, we reinterpret the decomposition formula 
(27), and consider that the central element ot = e i~ ~ T appears in the 
projection in the form 

L(X, or) ~ ei~ (33) 

This means that we will take 0 = O and regard O = O(q; - x )  as a gaugefied 
1-cochain as defined above. This means that it depends on the projected 
point x ~ R 2, which is its partner in the/ /3  coordinates, and, furthermore, 
it is gaugefied--it  depends on the point q e R where the irreducible represen- 
tations (32) [irreducible components of L(x, or)] act. Despite the local character 
of O as regards the first two slots (x) of the/-/3 coordinates, in the projection 
formula (33) O will as a whole account for the third slot irrespective of the 
details of its content. For example, L(x, off5) and L(x, a -1) will also be 
projected into the fight-hand side of (33), but L( -x ,  or) will be projected 
to  ei~ 

5.1.1. The Projection of  KS(H3) 

Let us project KS(H3) according to the map (33), in order to find the 
structure of the space generated by the operators Lt~(x), x ~ R z. This will 
be done in two steps: (i) the projection of operations like norm, involution, 
product, etc., and (ii) the verification of the Kac algebra axioms for these 
projected operations. Here the Kac algebra axioms will just play the role of 
guiding axioms, since the resulting algebra i sno t  exactly a Kac one. 

Let us begin by projecting the norm and the involution. Since e iO(q'-x) 
is a complex number, from (33) we have simply 

IlL(x, o011 ~ llLa(x)ll = sup{ llLa(x)d:ll~, 110112 = I in L2(R2)} 

The dagger in ~t(H3) is projected to 

Lt(x, or) ~ (ei~ (34) 

where, since these representations are unitary, Lh(x) = La( -x ) .  The involution 
* on the phase factor is not simply complex conjugation, but involves also 
the action of R 2 on R. It becomes fixed if we recall that Lt(x, et) = L ( - x ,  
•t - l )  ~ ei~ and compare with (34), which gives 

(eiO(q;-x)) * = e iO(q'x) (35) 
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It is easy to verify that the projected 11.11 and t satisfy all the usual norm and 
involution axioms [see them in Bratteli and Robinson (1987)]. 

The product in KS(H3) will also be projected according to (33). Care 
must be taken when dealing with such products of operators. Since an operator 
at the right feels the action of that at the left on R, its phase factor turns out 
to be modified. From (11) and the above we have 

eiO(q;_x)Ln(x)eiO(x- 1. q;_y)Lt~(y) = e i O ( q ; - x - y ) L n ( x  + y) (36) 

which only gives (28) [by (29) and lq( -y ,  - x )  = - l~(x,  y)] if 1~ = ~'O. 
This implies that O can be given by (30). The first condition imposed on 
the product is associativity, which is satisfied due to the closedness of  the 
cocycle ~ .  The second, Ln(x)l = 1Ln(x) Vx, where 1 = Ln(0), is true for 
(28) because f~(-, 0) = 0. 

Up to this point we have a unital, involutive, and normed algebra with 
product given by (28). It is also a subalgebra of ~(L2(R2)), and is certainly 
closed in the weak topology defined on it. This can be seen by comparison 
with the von Neumann algebra generated by the left-regular operators L(x) 
of R 2. The only difference between the action of  Ln(x) and the action of L(x) 
on L2(R 2) is a phase factor [see (26)], which does not affect the closedness 
property in the weak topology (see Section 4), for example. The conclusion 
is that the algebra generated by Ln(x), x e R 2, is a von Neumann algebra. 
It will be denoted .~tt~(R2). 

Going further, by (33) we project the coproduct to 

~L(x, or) ~ ei~ 

where A is not supposed to act on the central element e i~ Taking this in the 
expression for the coproduct of L(x, ct) and considering again the projection 
formula, we get 

AnLn(x) = ei~ ~ Lfl(x) (37) 

Notice that it remains symmetric, that is, tro A n = A ~, where tr(T | T ')  = 
T'  @ T, as was z~ on KS(H3). The first axiom the coproduct must satisfy is 
Anl = 1 | 1, which is trivial, since O(q; 0) = 0 for all q e R. The next 
is coassociativity, which means 

(A n |  o A n = ( id |  A n ) o An 

It is also trivial since the same phase factor occurs twice on both sides of 
this equation when it is applied to Lt~(x). Finally, A n should be a homomor- 
phism from ~ta(R 2) to ~tn(R 2) | ~tn(R2), which means that 

Aa(La(x)Ln(y)) = An(La(x))At~(La(y)) (38) 



Projective Fourier Duality and Weyl Quantization 589 

The left-hand side of equation (38) yields 

ei[ l ) (x ,Y)+~ -I- y) | Lo(x + y) 

while its right-hand side gives 

e i[O(q;-x)+O(x-l 'q;-y)+2II(x'y)]Ll)(X q- y) | Lt~(x + y) 

The phase factors are seen to be equal if we recall the expression for l l ( -y ,  
-x )  from (29) and the properties of D, 

The coinvolution is projected to 

~(L(x, or)) ~ ei~ ) 

where also ~ is supposed not to act on the phase factor. From (13), using 
(34) and (35), we get 

Ktq(Lf~(x)) = ei[~176 (39) 

Of all the axioms imposed on a coinvolution, K a fails to satisfy only one, 
the antiautomorphism axiom 

Ka( La(x)Lfl( y ) ) = KO( La( y) )Ka( La(x) ) (40) 

By (39), and taking care of the phase factors in the operator products, we 
obtain from the left-hand side 

K t ~ ( L ~ ( x ) L I ~ ( y ) )  = e i[ t~(x 'Y)+~176 - y )  (41) 

while the right-hand side gives 

Kf~( La( y) )Ka( La(x) ) 

: e i[O(q;Y)-~176176 --  y )  (42) 

After using the explicit expressions for II and O, we get 

Ka(La(x)La(y)) = ei(x=y2+ylx2)Ka(La(y))Ka(Lt~(x)) (43) 

instead of (40). We will return to this problem below. Concerning the 
remaining axioms that K a must satisfy: first, it should be involutive: 
Ka(Lh(x)) = Ka(Lt~(x)) *. This follows from (39) and (34). The requirement 
Ka(Kt~(La(x))) = Lt~(x) just implies that the phase factor in (39), which is 
antisymmetric in x, is canceled out when the second coinvolution is applied 
to Lo(-x).  This is obvious. The anticoautomorphism axiom, 

A~ o K~ = cr o (Ka | .:~) o An (44) 

is clearly satisfied: when applied to L~(x), the left-hand side of this equation 
raises the phase factor 

ei[(O(q;x)-O(q;-x))+O(q;x)] 
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while the right-hand side raises the phase factor 

ei[O(q;-x) + 2(O(q;x) - O(q;-x))] 

which is the same. 
From (43) it is evident that the projection van of the coinvolution va is 

not a coinvolution on ~tn(R2). The role of a coinvolution in Kac duality is 
explicit in formula (20), the definition of the dual involution o on the predual 
of IlL(H3). Since our main goal is to prove a duality for dlLO(R2), we are faced 
with a serious problem. The only weak aspect of the projection process of 
va which could eventually be modified to solve this problem is the assumption 
that it does not act on the phase factor. But if it did act, the only plausible 
action would be by conjugation (35) (since it acts by dagger on Ln), and the 
resulting van would be just van(Ln(x)) = L~(x), the usual coinvolution of a 
symmetric group Kac algebra. In that case, it would not only fail to satisfy 
(40) but also the anticoautomorphism axiom, which involves the nontrivial 
A n . More generally, if we define van with any phase factor other than that of 
(39), say e i*~q~, the unique W satisfying the last three axioms is just that 
combination of O's given in (39). This is most evident for the last axiom. 
We actually do not know of any good definition of van making of it a 
coinvolution, that is, enforcing all the above axioms. The solution we have 
found for this problem is to maintain the definition of v: n as it is given 
by the projection and modify the antiautomorphism axiom (40). A natural 
modification of it comes from the projection of the antiautomorphism axiom 
satisfied by L(x, eO, which is given by 

~(L(x, a)L(y, [3)) = ~(L(y, f3))~(L(x, o0) (45) 

Using the projection formula (33) on it, we get, for example, 

f<(L(x, ot)L(y, [3)) ~ e i tO(q;-x)+O(x-I  "q;-Y)lKfl(Lfl(x)L~(y)) 

on its left-hand side. Doing the same with the other side, we find that (45) 
projects into 

van( Ln(x)Ln( y) ) 

= e i I O ( q ; - y ) - O ( q ; - x ) + ~  (46) 

Given its nature, (46) should be called theprojective antiautomorphism axiom. 
The importance of (46) comes from the fact that it is promptly satisfied by 
(39). In fact, substituting (41) and (42) in (46), we easily match the phase 
factors with the help of the expression (29) for f~ and of its properties. Notice 
that no new axiom arises if the other axioms defining a coinvolution are 
projected. This ends the list of axioms satisfied by what can now be called 
the projective coinvolution K n. It can be anticipated that the change from the 
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axiom (40) to (46) will have consequences on the predual of  &n(R2). The 
dual axiom, (44), for the dual coinvolution will be changed, too. 

Finally, the trace ,~ is simply projected to its restriction to R 2 according to 

,~(f) = f (0 ,  1) ~ ,pn0~) = f (0)  (47) 

where a general element f of J/tn(R 2) is written 

f = fR 2 dxf(x)Ln(x) (48) 

From its very definition, this trace is n.f.s. (see Section 4.1). It also satisfies 
the three specific axioms for a Haar  weight, which are 

(id | ,0a)An(f ") = q)n0~)l Vf  ~ ~n(RZ)+ (49a) 

(id | q~n)[(1 @ gt)Af~(3~)] = K n o (id @ q~a)[Aa(gt)(1 @j~)] (49b) 

o : q~ll o K 1'~ K "~ 0"~ ~ (r-t Vt E R (49c) 

The third one is trivial here, since the modular group ,r 'pa is reduced to the 
identity when the Haar weight ,po is a trace. Concerning the other axioms, 
we start by observing that, although ,pa is not defined on the generators 
Lo(x), from (47) and (48) it may be guessed that it would act on La(x) as 
,o~(L~(x)) = ~(x). This corresponds to an extension of the domain of  ,0 n to 
the generators, which can be regarded as being given by Ln(x) = fR 2 dy 
~x(y)Lo(y). We notice also that 

A Of ~ = fR z dx ei~ (x)Lsa(x) ~ Lta(x) (50) 

Axiom (49a) then follows from the considerations above, which imply (/d 
| q0a)Anj ~ = f(0)Ln(0) = ,0a0~')l. In the same way the second follows from 
(39) and 

~rt = ( dx f(x)Lh(x) (51) 
2 

The resulting algebra, the projection of the symmetric Kac algebra of  
the Heisenberg group, will be denoted Kn(R 2) and called the projective 
symmetric Kac algebra of R z. It is built on the yon Neumann algebra ~n(RZ) 
with the usual operator norm and conjugation. The remaining structures are 
grouped into 

La(x)La(y) = eift(x'y)Lfl(x 4- y) (52a) 

1 = Ln(e) (52b) 
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Comments 

AnLn(x) = ei~ ~ Ln(x) 

Kn(LfI(X)) = ei[O(q',x)-O(q;-x)]th(x) 

flbql~ if T = ~ . 3  ~ q~n(T) / 

L + ~ otherwise 

The product of two elements f, g is 

(52c) 

(52d) 

f 
j~-~ = -~]"2xg 2 dx dyf(x)g(y)eia(x,y)Ln(x + y) 

= fR2 dZ fR2 dx ein(x'z)f(x)g(z - x)Ln(z) 

= I dz ( f  | g)(z)Ln(z) (53) 
JR 2 

where we have used the fact that l l  is antisymmetric to identify the 
twisted convolution 

( f  | g)(z) = f dx ein(x'~(x)g(z - x) (54) 
Jg 2 

Since the operator product is mapped into the twisted convolution of L ~- 
functions, (48) can be regarded as the linear left-regular representation of 
Lh(R z) induced by Ln. Here Lh(R 2) is the Banach algebra analogous to 
L~(R2), but with the twisted convolution. The involution remains in L 1 and 
its image by Ln gives the dagger of 3 ~ [see (51)]: ~ = Ln(f*). 

�9 Despite the Abelian character of R 2, the projective product makes 
of Kn(R 2) a noncommutative algebra. The noncommutativity can be measured 
by the introduction of a Lie algebra structure on Atn(R 2) through the 
commutator 

[Ln(x), Ln(y)] = 2i sin[fl(x, y)] Ln(x + y) (55) 

or by the introduction of the continuous R matrix 

Ln(x)Ln(y) = [ dz dw R(x, y; z, w)Ln(z)Ln(w) 
Jl~2 XR 2 

The R matrix elements belong to M~(R z) ~ Lh(R z) and are given by 

R(x, y; z, w) = eitn(x'Y)-n(z'w)lS(x + y - w - z) (56) 

Associativity of (52a) implies that R should satisfy the Yang-Baxter equation, 

T ~ Atn(R2) + (52e) 
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and (56) provides a new nontrivial solution for it. Let us observe that the 
associativity of (52a), the Jacobi identity for the commutator (55), and the 
Yang-Baxter equation depend on the closedness of f t .  

�9 The ideal of elements such that q ~ ( ~  < ~ is just 3q~a = Lh f3 
L2(R2). So, the GNS representation of this projective Kac algebra is given 
on L2(R 2) by ~r~n(f)g = f | g. The GNS image in L 2 o f j  ~ will be denoted 

�9 We can recover the L~-function f in the linear combination (48) 
through the Haar trace q~a by the formula 

f(x) = q~a[Lh(x)~ 

�9 Written in terms of the Mh-distributions (L~ C Mh), the projective 
Kac algebra operations, other than the twisted convolution and the trace, read 
( f ~  Lh) 

An(f)(x, y) = e i~  - y) (57a) 

KII(f)(x) = e- i[~176 (57b) 

5.1.2. The Dual Algebra of Ka(R 2) 

Analogous to what was done for the Heisenberg group, we now start 
fixing the predual of ~a(R2) and, by its Fourier representation, the dual of 
Kn(R2). Even though the latter is not a Kac algebra, the same techniques for 
establishing a duality for it will be used. In this section L p will denote LP(R 2) 
fo rp  = 1, 2, oo. 

The elements of ~/ta(R2). will be written as linear forms 0~ on ~ ( L  2) 
whose duality pairing with Lh(x) gives the functions 

(Lh(x), 0~) = (La(-x)fl g)L 2 = (f | ~)(x), f, g ~ L 2 

The functions co~(x) -- (f | g)(x) are thereby defined as the representative 
functions in the predual. From this definition it also turns out that these 
functions are in L~: I co~(x) I -< H211gl12 < ~. When no confusion can arise, 
they will be denoted simply by f, g, h, etc. 

The product on ~ta(R2). will follow from duality by 

(co~ * co~)(x) = (AaLn(-x), co~ | co~) 

= ei~ | L a ( - x ) ~ |  h) lg | I)L2| 

= eiO(q':)O~(X)CO~hl(X ) (58) 

and, since A n is symmetric, * is Abelian. Its associativity follows trivially. 
The unit is a consequence of (58) and is uniquely given by 

l(x) = e - i O ( q ' x )  
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To finish with the characterization of this predual, the dual involution 
~ is found from 

(oo~)~ = (Ln(-x) ,  ~o~ o) 

= (K'(Lh(-x)) ,  ~o~> 

= e-i[O(q',x)-O(q;-x)]~f~g(X) (59) 

It is indeed an involution, since it is antilinear, satisfies o o o = id, l~ = 
l(x) Vx, and is an antiautomorphism because, after recalling (35), the follow- 
ing two equations turn out to be equal: 

( f  * g)~ = e-itO(q.x)-O(q;-x)l(eiO(q~))*f(x)g(x) 

(gO,  fO)(x) = eiO(q.,x)-2[Ofq.,x)-O(q.,x)lg(x)f(x ) 

In analogy with the Kac algebra case, we call the predual ~n(R2).  the 
projective Fourier algebra of R 2 and denote it by A~ Since their elements 
are L ~176 we will denote the respective von Neumann algebra by L~(R2). As 
a final remark, notice that the projection of  the product (f .  g)(x, or) = f(x,  
oOg(x, o0, giving the correct projected product (58), comes from the projection 
o f f  ~ L~176 to L~(R 2) in the following way: 

f ( x ,  or) " '  e - i~  (60) 

Actually, it gives the * product if we allow the phase O to feel the action 
of R 2 on R as follows: f(x,  oOg(y, 13) = ( f  | g)(x, ot | y, 13) is projected, 
after (60) and considering that y acts on the phase at x, to 
e-i~176 while (f.g)(x, oO goes to e-i~ ~ g)(x). 
Making (y, 13) = (x, a)  and recalling that - O ( x -  q; - x )  = O(q; x), we find 
that the exponentials without action cancel out and the correct * product is 
obtained. In the same way, the action of  L~176 on the Hilbert space H(H3) 
by pointwise product is projected to the action of L~(R 2) on L2(R 2) by the 
�9 product. Projection (60) is also useful to project LLfunctions. From (60) 
and (33) we get the right projection of the KS(H3)-elements (10) into the 
operators (48). 

The Fourier representation h n of  A~ 2) is defined, in analogy with 
(21), by 

[kn(~oa)f](x) = [(~o a o K u | id)Aa~,a(x), f - -~ , .  ~ L2 n Lh 
(61) 
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From (50) and (52d) we readily get 

(ton o Kn | id)An~ = (ton | id) IR2 dr ei~ ~ La(x) 

= fR2 dr ei~ 

which gives 

Xn(toa)f(x) = (too *f)(x)  

Since the action of A~ 2) [or L~(R2)] is given by the * product, it follows 
that h n = id. This means that, as in the Kac case, the dual of Kn(R 2) is built 
on the yon Neumann algebra L~(R2), the L~-Banach algebra with the product 
�9 , and the involution o of A~ Its norm is the same as that of L ~ and 
satisfies IIFII = II/11, IIF *Jql = H 2. 

The generator of h a, that is, the operator W ~ in L~ | ~ ( L  2) satisfying 
ha(to n) = (id | r176 is given by 

[W~ y) = ei~ y + x) (62) 

We see that this generator acts on (x, y) e R 2 • R 2 as if it were W ~ -- 1 
| Lh(x), with 1 the constant function 1 ~ L~. 

By duality, we obtain also a coproduct on the dual L~(R2): 

A~ y) = ([La(x)La(y)] f, tog) 

= e-ia(x'y)(Lh(x + y)fl g) 

= e-ifl(x'Y)to~(x + y) (63) 

This coproduct is automatically coassociative, as it is defined by the associa- 
tive dual product. It is also unital: A~ y) = e-if~x,y)e-iO (q',x+y), while (1 

1)(X, y)  ---- e -i[O(y'q'x)+O(q;y)l. In this last expression it must be recalled that 
the phase factor d ~ is a special kind of complex function which is sensitive 
to the action of R 2 on R, even when the simple product in C is performed. 
The homomorphism axiom was already proved for Kn(R2), but it is interesting 
to verify it here again, since it confirms the strange behavior of e i~ under 
the complex product. It follows from 

A ~  g)(x, y) = e-iO'(x'y)ei~ -4- y)g(x + y) 

(A~  A~ y) = (AOf(t). A~ . A~ 

= eiO(y'q'.X)eiO(q.y)AOf(x, y)A~ y) 

= ei~176 + y)g(x + y) 
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where we have written A~ = A~ ~1~ | A~ ~2). The homomorphism is estab- 
lished after recalling the expression for - f l (x ,  y). The above two axioms 
would not hold if we did not allow O to feel the action of R 2 on R. 

The candidate coinvolution in/_~ comes from the duality relation 

KO(to~g)(X) ---- (Kfl(Ztl('X)), tO~g) = e-i[O(q"x)-O(q;-x)]to~(--X) (64) 

It satisfies the first three coinvolution axioms without any problem, including 
the antiisomorphism condition, which its dual K ~ fails to satisfy. The problem 
lies precisely in the anticoautomorphism axiom. This is just the dual of the 
problem found in Ka(R2), and its solution will be given by dualizing the 
solution of that problem, namely dualizing the axiom (46). Recall that (40) 
can be written in the form K t~ o m = m o (K II @ K ll) o O', where m denotes 
the product on Ka(R2). We adapt this form to axiom (46) and dualize it, that 
is, just transpose the order and change the operations to their duals, taking 
into account the effect (35) of duality on O and transposing x ~ y. It should 
be noticed that, from the properties of O, it follows also that 

(eiO(x-l.q;y)), : eiO(x.q;-y) 

We obtain 

[A o o KOf](x, y) 
= e-i[O(q;y)-O(q',x)+O(y'q',x)-O( x-I "q;Y)][ff o (K O @ K O) o AOf](x, y) (65) 

as a new axiom replacing (44). It will be called the projective anticoauto- 
morphism axiom. Provided care is taken with the product of complex functions 
e '~ when computing its right-hand side, (64) is promptly seen to satisfy this 
new axiom. After these changes K ~ should be called the coprojective 
coinvolution. 

Finally, the trace (23e) is projected to the n.f.s, trace 

fH3 = IR dx e-iO(q;-x)f(x) q~(f) = dx dot f(x, or) ~ q~O(f) 2 (66) 

where f e L~(R2) +. If this projection is interpreted as coming from the 
projection (60) o f f  e L~(H3) to/_~(R2), it is evident that the projection of 
'0 to tp ~ is only possible due to the compactness of the central group T. This fact 
has also been observed in prequantization (Tuynman and Wiegerinck, 1987). 

The trace (66) is of Haar type, since it satisfies the axiom (49b), for 
example, as follows: using the formulas for tp ~ o, and *, we obtain from the 
left-hand side 
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(id | ~p~ | gO).  AOf](x) 

dy e-i~176176176 y) 

dy A~ y)g(y) 

while from the right-hand side we have 

K~ | q~~176176 * (1 |  

= e-i[O(qz)-O(q;-x)](AOgO)(l)(--x)q~O[(AOgO)(2) . f ]  

= ~ dz A~ z)f(z) 
JR 2 

They become equal when we substitute the expression for the coproduct A ~ 
and make the change of variable y = z - x in the last integral. Axiom (49a) 
follows smularly and (49c) results automatically because ~r~ reduces to 
the identity. 

The algebra so far obtained will be called the projective Abelian Kac 
algebra of R 2 and will be denoted K~ It is built on L~(R2), and its 
structure, besides the usual L| is summed up in the following properties: 

f~ = e-i[O(q"x)-O(q;-x)]f(x) (67a) 

( f  * g)(x) = ei~ (67b) 

I(X) = e -iO(q'x) (67c) 

A~ y) = e-ia~x'r)f(x + y) (67d) 

K~ = e-i[~176176 (67e) 

q~fl(.f) = f dx e-i~ (670 
Ja 2 

Comments 

�9 The name projective does not put Ka(R 2) and K~ 2) into the same 
category, since the projective coinvolution K a and the coprojective coinvolu- 
tion K ~ are defined by different sets of axioms. 

�9 It can be confirmed that L~(R 2) acts on L2(R 2) from the GNS construc- 
tion induced by the trace q~O. This trace defines a scalar product on the ideal 
of elements f such that q0~ ~ * f )  < ~ by (f ig)  ~ ~pO(go . f) .  Direct 
calculation from (67a) and (67b) gives the usual L2-scalar product (fi g) = 
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fR 2 dx, f(x)g(x). The inclusion of f E L~ into L 2 by this construction is 
denoted fro. 

The scalar product defined by q~O also shows that the involution o goes 
to the simple complex conjugation in L 2. Thus, the antiunitary operators 
implementing on L 2 the involutions o and * are simply 

J~ = f (x)  

Jnf(x) = f ( - x )  

They provide the adjoint of the unitary Fourier representation generators, 
for example, 

wO,  = ( j n  | j O ) w O ( j n  | j o )  (68) 

whose action on L 2 • L 2 is 

[W~ F ](x, y) = ei~ eifl(x'y) F(x, y -- x) 

Operator J a  is the correct projection of 3, but j o  is just the implementa- 
tion of o as complex conjugation and does not equal the projection of [Jf](x, 
or) = f(x ,  or). The latter is projected to 

J'Of(x) = e - i tO(q ' , x ) -O(q ; - x ) ] f ( x )  

In terms of the actual projected operators we have the canonical implementa- 
tions of K ~ and K ~ in L2: 

Ka(La(x)) = J'OLh(x)J'O 

KO(j) = j a f o j a  

That K a is implemented by J ' ~  and not by j o  can be explained if we recall 
that (1) in contrast to K ~ K a is not a linear antiantomorphism, but a projective 
one, and (2) the involutions embodied in the antiunitary operators J are 
closely related to the algebra product and not to the coproduct. 

As regards the canonical implementation of A ~ and A a, it is easily 
verified that W ~ and W a, respectively, do the job. After recalling the *- 
action of L~ on L 2, we find that 

[W~ @ f)W~ y) 

= ei[~176176 + y)F(x, y) 

The phase O(x 'q ;  - x )  comes from the action of W ~ over the previous 
action of W ~ by L a ( - x )  and cancels out with the first O. On the other hand, 
we have 
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[A~ y) = e - i [ f l ( x ,Y )+~176  -t- y)F(x, y) 

Recalling the expression for l-I as the cohomological derivative of O, we 
arrive at the equality of the left-hand sides, namely 

A~ = W~ |  ~ (69) 

This implementation is not unique, as (69) will be also satisfied for any 
operator V ~ introduced through W ~  y) = ei~176 y) or, equivalently, 
by V~ y) = e-ifl(x'y)F(x, y + x). Nevertheless, W ~ is the unique operator 
generating the Fourier representation h ~. In Kac algebra terminology, it is 
the fundamental  operator of the projective Kac algebra K~ This means 
that it satisfies the pentagonal relation, a point easily confirmed by direct 
calculation. 

To show the implementation of A ~, we first find W a = ~ = o" o wO* 
oo-and W f~* = (7~ W Oo(7, 

WnF(x,  y) = ein(y.x)eiO(q',-y)F(x - y, y) (70a) 

Wfl*F(x, y) = e - i f l ( - Y ' X ) e i ~  + y, y) (70b) 

Keeping in mind that these generators behave like W ~ ~ Lfl(y) @ 1 ~ and 
W ~* ~ L~(y)  | 1, we get, after some cancellations, 

[W~( l  | Lo(z) )W"*F](x ,  y) 

= e i [ f z ( z ' x )+O(q;-y)+Ofy- I  " q ; Y - z ) l F ( x  - z ,  y - z) 

and 

AOLa(z)F(x, y) = eit~ - z, y - z) 

which turn out to be equal if we recall that II(z, y) = f l (y  - z, -y) .  Unlike 
what happens in the dual case, the operator defined from the expression for 
W a by VaF(x,  y) = e-if~(x'y)F(x - y, y) does not implement A ~. 

In order to establish a projective duality, we proceed now to determine 
the predual of/_~ and its Fourier representation. First, we must point out a 
particularity of projective algebras: the duality pairing (-,  �9 ) used so far 
to connect Ata(R 2) and its predual A~ 2) involves implicitly a complex 
conjugation of the phase factors, since the representative functions in the 
projective Fourier algebra are defined in (18) by pairing with Lh and not 
with La. The result is that the phase factors in the structure of A~ 2) get 
complex-conjugated. Furthermore, the dualization process from (66), which 
brings the projective antiautomorphism axiom from Ka(R 2) to the projective 
anticoautomorphism axiom of K~ involves not only a transposition, but 
also a complex conjugation of the phase factors. In contrast to these duality 
pairings, the impossibility of working with the L~-generators forces us to 
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put generic L~-functions g in the duality pairing between this algebra and 
its predual, which is usually given by (g, JO = fR 2 dx g(x)f(x). That is, the 
complex conjugation of the phase factors is implicit. With these remarks in 
mind, and recalling that the O-phase factors are complex-conjugated 
according to (35), while those involving I~ are complex-conjugated as usual, 
we begin by introducing the representative functions on L~, through 

(oOhf) = (g * h If) = f dx g(x)ei~ g ~ L~, h, f (g, L 2 

�9 toOhf(X) = ei~ = (h *f~ (71) 

When no confusion can arise, these functions will be also denoted by f, g, 
h, etc. The product in the predual comes from the coproduct A ~ by 

f 
(g,f(~) h ) :  ( A ~  h ) =  [ dx dy eit~(x'y)g(x + y>f(x>h(y> 

JR 2 • R 2 

which gives the twisted convolution (54). The involution * comes from 

(g' f*)  = (K~176 f )  = fR2 dx g(x) f ( -x)  

and coincides with the Ll-involution. At this point we could already guess 
that the predual we are looking for is just Lh(R2). This is confirmed when 
we recall the HOlder inequality (Choquet-Bruhat et al., 1982) for Le-spaces, 
p = 1, 2, which says that, if h, f E L 2, then the modulus of their product is 
an integrable function in L 1. This implies that the function (o~ given in (71) 
are L ~. Furthermore, their product and involution also characterize them as 
Lh(R2)-functions. 

If duality is to hold, the dual of the Fourier representation )t ~ should 
be generated by W a, the dual of W ~ This dual generator has already been 
given in (70a). The representation of Lh(R 2) it generates is denoted by h ~ 
and follows from the identity 

(g I h~ * l) = (g ~ f l  Wa(l ~ h)) 

Recalling that tOh~ = h | f ~ Lh, we find that h ~ is given by 

X~ ~ = ~ dx a)~ 
JR 2 

(72) 

Its range as an operator on a Hilbert space is restricted to L~ t3 L2(R2). Let 
us observe that h ~ cannot be written 



Projective Fourier Duality and Weyl Quantization 601 

xo(coo)f  o = [(coo o Ko | id) (AO)(f ) ]  o 

perhaps because K ~ is not an anticoautomorphism. 
Formula (72) coincides with the expression (48) for a generic element 

of J~ta(R2), which enables us to conclude, from (53) and (51), that it is 
actually a linear and involutive representation of L~(R 2) in that von Neumann 
algebra. At this point it is no longer necessary to show that the product * 
and the coprojective coinvolution K ~ go, by duality, respectively into the 
coproduct A u and the projective coinvolution K a. Furthermore, in addition 
to being the unique operator implementing the coproduct A a and generating 
k ~ the fundamental operator W a satisfies the pentagonal relation. All these 
facts confirm the existence of a duality between the projective Kac algebras 
Kn(R 2) and K~ By the association of these symmetric and Abelian 
projective Kac algebras to the Abelian group R 2, the projective Kac duality 
provides a projective Fourier duality for this group. 

As a by-product of the pentagonal relation, which can be considered as 
the symbol of  duality (Baaj and Skandalis, 1993) and is satisfied by both W ~ 
and W a, we find that the operators V ~ and V a, coming from 

W~ y) = eiO(q~)VOF(x, y) 

Wf~F(x, y) = eiO(q;-y)VflF(x, y) 

satisfy the following projective versions of that relation: 
O O O [ V 23 V Ia V IEF](x, y, Z) = eiQ(x'y)[ v~ V~ y, z) 

[V23VI3VI2F](x, y, Z) = e-iO(Y'z)[V~V~23F](x, y, z) 

As regards projective Kac duality, it must be remembered that these 
algebras are not objects in the same category if the Kac algebra category 
definition given in Enock and Schwartz (1992) is to be maintained. The 
coinvolutions in the projective Kac algebras satisfy different sets of axioms. 
They would become objects of the same category if we could define a wider 
category whose objects would be algebras similar to Kac algebras, but where 
the coinvolutions would be more general linear maps K' satisfying only 
the axioms 

K P o *  = * O K  r 

K t ~  I = id 

Unfortunately, such a category is not well defined, since the anticoautomorph- 
ism property of K u and the antiautomorphism property of  K ~ seem to play 
an important role in projective Kac duality. For example, the property of K u 
alluded to seems to be responsible for the expression (61), while the same 
is not true between K ~ and A ~ 
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5.2. Irreducible Decomposition According to the Projective Dual 

This subsection is devoted to the decomposition of the projective Kac 
duality obtained in the last subsection according to the projective unitary 
dual of R 2. We begin with the decomposition of the projective Kac algebra 
Kn(R 2) according to the decomposition of the left-regular representations Ln 
in terms of projective irreducible representations. The latter are obtained by 
restricting to R 2 the irreducible linear representations of/-/3 shown in (8). 
The result is 

[Sv(x)~](q) = e-iv~ - Xl), v e Z - {0} (73) 

By direct calculation and using, the relation between the cochains O and I~, 
one easily verifies that these operators satisfy the projective relation (5), 
while the members of the other series of irreducible representations of Ha, 
(8b), do not. By the Stone-von Neumann theorem and Bargmann's method, 
we conclude that (73) are the unique irreducible projective representations 
of the plane group. Since they are also inequivalent, the D.,-projective dual 
of R 2, here denoted ~ , , i s  just Z - {0}. The Von Neumann algebra generated 
by this kind of bounded operator on L2(R) will be denoted ~tn(R2). Since 
the operators (73) come from the representations of the Heisenberg group, 
which is a group of type I, the algebra dlLn(R 2) is also of type I. In the 
following we will proceed along the lines of the symmetric Kac algebra 
decomposition exposed in Aldrovandi and Saeger (1996). The task here will 
be simpler than in that work, since the Haar weight involved is a trace. The 
decomposition of avon Neumann algebra generated by regular representations 
of a unimodular type I group was already established in Dixmier (1977). The 
only new aspect here is that the representations involved are project ive.  To 
proceed further, we will suppose the existence of a positive measure ~(v) 
on ~'-such that the following equality holds true: 

Ln  = ~ l~(v)S~ (74) 
v~Z-{O} 

The decomposition (74) is based on the facts that (i) both Ln and S~ are 
projective operators, (ii) these are irreducible, and (iii) the representations 
(73) can also be defined by 

[S~(x)f~](y) = eim~x'Y~f~(y - x)  (75) 

where the functionsf~ ~ H~(R 2) -- L2(R) enter in the projective decomposition 
o f f  ~ L2(R 2) according t o f  = ~ z - t 0 1  Ix(v)f~ and are given by 

f~(x) = e~i~mxt~(x~) 

Taking this Hilbert-space projective decomposition into (75), we promptly 
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obtain (73), with q = Yl- Thus, Sv is actually an irreducible projective compo- 
nent of Ln. 

Since (74) does make sense, we can go on and decompose the respective 
representation of  Lh(R 2) through 

Lr~(f) = ~ pL(v)S~(/) 
vEZ-{0} 

where 
/ .  

S~(f) =--- f~ = JR z dx f(x)S~(x) (76) 

The last formula can be regarded as the projective Fourier transform on  R 2, 
that is, a map associating an operator-valued function of ~ " t o  each 
Lh-function on R z. 

Operators (76) act on LZ(R) according to (73), through 

Lf~0(q) = fR du KT( q, u)~(u) 

where the kernel Ky is given by 

u) = fR dv  e-iv~ - u, V) iCy(q, 

This enables us to introduce a trace on the operators (76) by 

'IR Try(f0 -- ~ dq iCy(q, q) 

After recognizing the Dirac delta distribution on R, 

'It ~(v) = ~ dq e iqv 

we f'md that the above trace turns out to be 

Tr~(f~) = f (0)  (77) 

for all v ~ Z - {0}. On the other hand, by Dixmier (1977), the decomposition 
of the trace q~ on Kn(R 2) should be given by n.f.s, traces q~ according to 

qo~(3r = ~ p , ( v ) q ~ )  (78) 
veZ-{0} 

If we take q~ = Tr~ and recall that q~t~(]) = f(0),  we conclude from (77) 
that the measure I~ must be such that ]~v~z-t0l I~(v) = 1. As a first application 
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of the trace decomposition, we establish a projective version of the Plancherel 
formula. It comes as a consequence of tOa(~t~ = ( f ,  | f)(0) and of the 
decomposition (78), 

fg dx If(x) 12 = ~ Ix(v) Tr~[~s~] (79) 
2 wZ-{0} 

which allows IX to be called the projective Plancherel measure associated to 
the Haar measure on R 2. 

We recover the L~-function at (76), or the  inverse projective Fourier 
transform, by decomposing f(x) = tOn[L~(x)~, namely, 

f(x) = ~ ~(v) Trr[S~t(x)j~] 
v~Z-{O} 

=- ~ Ix(v)f~(x) (80) 
*,EZ-{0} 

Since f~(x) = Tr~[S*~(x)f~] = f(x) for all v [see (77)], the sum over the dual 
is, in fact, not needed and we have 

f(x) = Tr~iS~(x)f~], Vv e Z - 10} (81) 

The von Neumann algebra Ata(R 2) with the projective operator product 
of  its generators S~(x), x ~ R z, together with the trace Tr, and the remaining 
projective Kac algebra structure inherited from Ka(RZ), turns out to be a 
projective Kac algebra. This is so because, by property (77), the traces Tr~ 
have the same characteristics of the trace tO n, and are also Haar traces. This 
algebra will be denoted K~a(R2), and its structure is given by 

S~(x)S~(y) = eiVtl(x'y)Sv(x + y) (82a) 

1 = S~(O) (82b) 

AvSv(x) =- eiv~ ~ Sv(x) (82c)  

KvSv(x) = eiv[~176 (82d) 

Tr (T ) = r,,~,_~l,,,,~ if T, = ~ .3~  T~ ~ A~(R2) § (82e) 
[+oo otherwise 

These projective Kac algebras have exactly the same structure as that of 
Ka(R:), so it is unnecessary to verify the axioms again. Observe that its GNS 
representation, as induced by Try, is in the Hilbert space L2(R2), while its 
elements act on if(R).  This is due to the fact that the operators 
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f 
= JR dxf(x)S,,(x) (83) L 2 

are written in terms of Lh(R 2) functions f, while the generators S~ act on the 
"wavefunctions" on the configuration space. 

The main difference between the above projective decomposition and 
the linear one performed in Aldrovandi and Saeger (1996) lies in the Haar 
weight decomposition. In the linear case the Haar weight (trace or not) does 
not satisfy (77) and is not, consequently, decomposed into Haar weights as 
happens with q~n. In that case the Kac algebra decomposes into Hopf-von 
Neumann algebras generated by irreducible operators, and not into algebras 
of the same category (recall that a Kac algebra is just a Hopf-von Neumann 
algebra plus an n.f.s. Haar weight). 

The predual of Atn(R 2) is obtained in the same way as in the previous 
case, that is, by duality. The representative functions &~x in the predual are 
given by the pairing 

~x(x) ---- (S~(x), &~x) = (S*~(X)~ I x)L2(R) 

= ~ dq e-i~~ + xl)x(q) (84) 

Also by duality, we obtain that the involution is conjugation by o and the 
product is the star product *, operations already introduced in (59) and (58). 
The only difference between the present operations and those previously 
shown is a v dependence in the phase factors. They are given explicitly by 

f~v(X) = e-iv[O(q;x)-O(q;-x)]fv(x ) 

(f,, * g,,)(x) = eiv~ 

where we have written the functions (84) as f~, g~, etc., to emphasize their 
v dependence. From their definitions it follows also that these functions are 
essentially bounded, that is, they belong to L~(R 2) for every v. The predual 
Atn(R2). will be denoted A~ z) and can be interpreted as a v-component 
of the projective Fourier algebra A~ With regard to Fourier representa- 
tions, the v-component 6~ of k n should be given by 

[6",(&0f](q) = [(&~ o K" | id)A~f~]rr~, f = (J~)Tr~ E Lh f'l L2(R z) 
(85) 

By the same kine of manipulations as made after (61), and recalling that 
A~ 2) acts on L2(R 2) by *, the result is 6"v = /d .  This should be interpreted 
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as the 
generator of this representation can be obtained from 

(g  I I~v(g~)~vX) * f)L2(g 2) = (g  | X I W~ | ~))L2(R2)~L2(R) (86) 

and turns out to be the operator in A~ 2) | At~a(R 2) given by 

W~ ~)(x, q) = ei"t~176 + xO, q --/: q' 

The phase factors come, respectively, from the *-action on L2(R 2) [q' comes 
from the product (67b)] and from the action of S~(x) on L2(R). From the 
expression (62) for the fundamental operator W ~ and from the fact that the 
action of Lh(x) at y is decomposed into the action of S~(x) at q, we verify 
that W ~ acts like W ~ - 1 | S~(x), and thus gives the genuine decomposition 
of W ~ as the Fourier representation generator. 

The coproduct and the coprojective coinvolution, when suitably decom- 
posed from K~ provide A ~ with the additional structure 

A,,f~,(x, y) = e-i~'atx'Y)f~,(x + y) 

g,,f,,(x) = e - i V [ ~ 1 7 6  

In the same way in which W ~ implements a coproduct, the generators W ~ 
implement the above coproducts and, as a consequence, also satisfy the 
pentagonal relation. 

The predual of L~ has already been found: it is the non-Abelian algebra 
Lh(R2). Let us examine the decomposition of its Fourier representation h ~ 
Since k ~ is, up to a restriction on its range of application, the left-regular 
representation of Lh(R2), its v-component try should be given by (76) with 
a restriction in the range to L~(R 2) N L2(R), that is, 

= = fR dxf(x)S,,(x) (87)  vtf) L 2 

Needless to say, these are faithful involutive representations, mapping the 
twisted convolution into the projective operator product in K~(R2), for each 
v in the projective dual. The generator of this representation is easily obtained 
from a formula analogous to (86) and is given by 

W~(~,f)(q, y) = e i V I ~ 1 7 6  - Yl)f(Y), q' --/: q 

The same arguments which led us to recognize Wv ~ as the decomposition of 
W ~ also lead us to identify W~ as the irreducible decomposition of the dual 
W a, for they behave like W~ ~ &,(y) | 1 ~ Furthermore, they also implement 
the coproducts (82c) and consequently satisfy the pentagonal relation. 

Here ends our description of the projective duality decomposition. 

injection of each A~ 2) into the von Neumann algebra L~. The 
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6. W E Y L  QUANTIZATION AND DUALITY 

We are now in a position to reexamine the Weyl-Wigner formalism in 
the context of the projective Fourier duality decomposition obtained in the 
last section. The expression for the projective Fourier transform (76) is 
formally equal to the expression (83) for the elements of K~(R2), themselves 
given by the components cr~ of  the Fourier representation k ~ It brings 
naturally to mind Weyl's formula, which associates a function on phase 
space to an irreducible projective operator on configuration space. Before 
proceeding to make this identification, we observe that, instead of  the label 
v, Weyl's formula exhibits the Planck constant h (Weyl, 1931, IV, w This 
fact leads us to consider a rescaling in the projective dual Z - {0} to h - l Z  

- {0}, and to fix the value of the label v as v = 1. Doing that means that 
we are selecting just one irreducible projective representation of  R 2 and just 
one projective Kac algebra I~(R2). This shows how quantum mechanics is 
restricted to a particular inequivalent representation or superselection sector 
(Landsman, 1993). In this context, Weyl's formula 

j~n = ~ dx f(x)Sn(x) (88) 
2 

is a particular irreducible representation of  L~ in the operator algebra 
K~(R2). The correspondence is completed when we write f in terms of  this 
kind of  operator. This follows from formula (81), which recovers f from 
(88) through 

f(x) = Trn[S~(x)j~n] (89) 

It is also possible to rewrite Weyl's formula as a linear combination of  
self-adjoint operators. This can be done by introducing operators Sn(y) such 
that the projective operators Sn(x) are their Fourier transforms: 

1 IR dy ~(y)Sn(y) (90) S (x) = 2 

where Xx(Y) = e (/~)xy. Comparing S~(x) and Sn(-x), we conclude that S~ = 
Sn. When we substitute (90) in (88), we must also substitute the Fourier 
transform f~ for f = fh ~ Lh, 

1 fR dZXx(Z)fti(Z) f(x) = ~ h  2 

so that the two additional integrals are canceled out by the character-complete- 
ness relation 

IR dx Xx(Z)Xx(Z') = (27rh)2~(z - z') 
2 
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The Weyl formula becomes 

= Is A 2 

while the Fourier transform of (89) gives us back the function 

:~(x) = Trd~(x):~] 

As S~ is self-adjoint, this function is real. It is the Wigner clistributionfunction 
associated to the operator.f~. 

A particular distribution function is the Fourier transform of the 
A~ associated to the wavefunction ~, which is given by (84) 
with • = ~ and v = h -I. Changing variables in the integral, we can rewrite 
that formula as 

~o~(x) = (~ t &(x)O 

= f dq e(~)qx2~(q + xll2)~(q - xll2) (91) 
Jg 2 

The Fourier transform of this function is just the Wigner distribution associ- 
ated to the density operator I ~)(~1 (Hillery et al., 1984; Lee, 1995), 

W~(x) = [~to~](x) = fg dq e-(~)qx'~(x2 + q12)~(x2 -q12) 

Notice also that, if we match our notation with Dirac's through (• = 
(xISI ~), the function in (91) is the same Lh-function corresponding to the 
operator3~A = I~)(~1, which is given by (89), 

: ( x )  = (~ lS~(x )  l~> 

The Wigner functions f are also called "quantum" functions, since they 
depend on the constant h. Since they are the Fourier transforms of f E 
Lh, they obey the noncommutative "twisted" product oa, the Fourier image 
of the twisted convolution 

( f  | g)(x) = TrA[S~(x)fa "~al 

which is explicitly given by 

[~( f  | g)](z) = (X~z, f | g) 

_ 1 f dx dy e(i~)n(x'y)Xz(X + y)f(x)g(y) 
2"trh JR2XR2 

---- ([~f] oa [~g])(z) (92) 
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The algebra of these essentially bounded functions with the product o~ can 
be called the Moyal algebra and will be denoted here by A~(R2). The Fourier 
transform, which is a well-known isomorphism between the Abelian algebras 
L l and L ~ over the plane, by (92) turns out to be also an isomorphism between 
the noncommutative algebras L~(R 2) and A~(R 2) (Folland, 1989; Gracia- 
Bondfa and V~illy, 1988). This isomorphism extends to dt~ through Mh,  
for the generators S~(x) are mapped [by (89)] into the "densities" Bx ~ Mh 
and, by the Fourier transform, into the characters 

1 

2"rrh 

which are the generators of the algebra An. We call ~bx the generators of that 
algebra because its elements are given by (the Fourier transforms) 

f~(Y) = I dx d~(y)f(x) = [~f](y) 
JR 2 

Their product, according to (92), is given by 
( r oh r = e(i/h)II(x'Y)f~x+y(Z) 

which proves the isomorphism of At~ and An. Extending it further (again 
through the Fourier transforms) to the Kac structure, we can add to the 
structure of A~ a the coproduct and the coinvolution of Mh [see (57)]: 

[(~ | ~)An(f)](x, y) = ( ~  | ~y, Anf) 

_ (27rh) 2 1  I~2 dz e(i/h)~ + y)f(z) 

- [ A * ~ f ] ( x ,  y )  

~Kn(f)(x)  = ( ~ ,  Kn(f)) 

- 2~rhl f2 dy et~)t~176 

- K ~ ( ~ f ) ( x )  

Furthermore, the involution is mapped into the complex conjugation and the 
unit into the constant function d~0 = 1/(2"rrh), while the Haar trace compatible 
with this structure is given by Tr~(fD = f~(O). Summing up, the Kac structure 
of A~(R 2) is given by 

d~x o r dpy = e(~)n(x'Y)f~x+y 
1 = ~bo = 1/(2"rrh) 

Ahdpx = e(i/h)O(q;-x)dpx @ dpx 
K~dpx = e(i~)[O(q;-x)-O(q',x)]dpx 

Tr~(,l,x) = Bx 
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7. FINAL REMARKS 

To study how the Weyl-Wigner formalism inserts fits into the framework 
of general harmonic analysis, we have reviewed the role of the Heisenberg 
and the translation groups in the process of quantization on Euclidean phase 
space. Starting from a well-established (Fourier) duality for the Heisenberg 
group in terms of Kac algebras, we were able to introduce two new projective 
Kac algebras, in terms of which a projective duality for the translation 
group is defined. For these algebras to provide a projective duality, the usual 
coinvolution axioms have been suitably adapted to the projective framework, 
and this has forced us to introduce new operations. The irreducible decomposi- 
tion of the symmetric projective Kac algebra according to the D-projective 
unitary dual of R 2 was also performed, and it was shown how duality survives 
at the irreducible level. The preduality relations between whole and decom- 
posed projective Kac algebras provide an explanation for the origin of the 
Weyl formula as an irreducible component of the Fourier representation of 
the Abelian projective Kac algebra. They also show the dual role played by 
the Weyl operators and respective quantum functions, where the latter are 
obtained from the first by Wigner's recovering formula and the Fourier 
transform. All these facts allow us to conclude that the Weyl-Wigner corre- 
spondence is incorporated in the projective (Fourier) duality of the translation 
group. We can go further and ask whether it is possible to generalize this 
duality principle to quantization on any other phase space. This question is 
partially answered in Aldrovandi and Saeger (1996), where the authors 
showed how far it is possible to extend this principle to the half-plane, whose 
canonical group, though requiring no central extension, has the awkward 
properties of being neither Abelian nor unimodular. 

In the effort toward a general quantization prescription much has yet to 
be done. We have nevertheless, in the hard process of unraveling its pattern 
through case study and abstraction, obtained a glimpse of the basic frame 
and are in a position to risk a provisional proposal. Given a phase space, we 
should look for its linear canonical group. Find then its two Kac algebras, 
the symmetric and the Abelian. Examine the cohomology to see whether an 
extension is necessary, and proceed or not to it accordingly. The resulting 
symmetric algebra will be the space of quantum operators of the system. 
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NOTE ADDED IN PROOF 
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work by him (Hudson, 1978) where he obtained similar results, although not 
departing from Kac algebras. It is worth mentioning that recently some related 
works departing from Kac algebras have appeared (Landstad and Raeburn, 
1995; Enock and Vainerman, 1996). Although they deal with projective 
representations, their objective and approach are quite different from ours. 
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